感觉信息与视知觉的形成

  人类对客体的视知觉是由低层次的各种感觉信息(包括光谱成分、双眼视差、速度、方位等)经过多层次的加工逐步形成的。低层次的感觉信息是指从视网膜上提取的信息棗对应于视知觉的早期加工。每种感觉信息都对视知觉有贡献:光谱成分参与颜色知觉的形成,方位信息参与形状知觉的形成,双眼视差参与深度知觉的形成,速度信息则参与运动知觉的形成,如图5.2所示。

   这种简单的映射方式意味着,视知觉是按图5.1a的独立并存通路加工。但是神经生理学的实验证据表明[60][61],每一种低层次的感觉信息都要参与多种知觉的形成。例如,速度信息不仅参与运动知觉的形成,而且利用运动加工形成的结构参与形状知觉的形成,还利用运动视差加工参与深度知觉的形成(如图5.3a所示);类似地,双眼视差既参与深度知觉的形成,也参与形状及运动知觉的形成(图5.3b);方位信息除了直接参与形状及深度知觉的形成以外,还间接参与运动知觉的形成(如图5.3c中的虚线所示);光谱成分则除了直接参与颜色知觉的形成以外,还间接参与运动、形状及深度知觉的形成(图5.3d)。

  全部视觉信息都是通过眼睛输入。眼睛象个照相机,它包括可以自由调焦距的“晶状体”、可以改变孔径大小的“瞳孔”、可接受聚焦图象的“视网膜”等三个主要部分。视网膜由多层细胞组成:最外层是作为光感受器(对入射的光量子有响应)的细胞层棗按其形状的不同又可分为视杆细胞和视锥细胞两类。每只眼睛里的视杆细胞超过十亿个,它们对微弱的光有响应;视锥细胞数目只有700万左右,它们对强光有响应。视网膜的最里层是神经节细胞,其作用是将输入眼睛的信号传送到大脑皮层。对眼睛的输入就是指入射眼睛的光线,输出则是指神经节细胞的“发放”(即发出由光量子转换而来的电脉冲信号)。

对灵长目来说,神经节细胞有两个主要分类:M细胞和P细胞。M是指Magno,其意思是大;P是指 Parvo,其意思是小。在视网膜中的任意一点,M细胞都要比P细胞大,并有较粗厚的轴突,因而使信号传递速度快;同时M细胞还有较大的感受器,对光强分布中的微细差别敏感,故能有效处理很低的对比度,但在高对比度时其发放率则容易达到饱和,且空间分辨率低,对颜色也没有感觉。P细胞则相反,它能有效地处理高对比度,其输出与输入的关系接近线性,并有高的空间分辨率,对颜色也敏感,但信号传递速度较慢,其数量则比M细胞多得多(P 细胞占神经节细胞的80%左右,M细胞只占10%,另有10%左右为其他细胞)。主要由M细胞和P细胞组成的神经节细胞,通过轴突将由光量子转换而成的电脉冲信号传送到丘脑的侧膝体(LGN),然后再由LGN传输到大脑皮层。灵长目的侧膝体共有6层,如图5.5所示[22]。其中两层由大细胞构成,分别接受右眼或左眼的输入,且输入主要来自视网膜的M细胞。视网膜上的P细胞则投射到其余4层上(分别来自左、右两只眼睛,但每一层只能从一只眼睛得到输入)。生理实验表明:LGN中的小细胞层的神经元主要携带有关颜色、纹理、形状、视差等信息,大细胞层的神经元则主要携带与运动及闪烁目标有关的信息
    大脑皮层的结构也是分层的,一般是把它分成6层,实际上在某些层中还包含几个亚层,如图所示。

最上面的是第1层,这层只有很少的细胞体,主要是由以下各层中锥体细胞向上延伸形成的树突末梢以及末梢之间相互连接的轴突构成。在它下面是第2、3层,在这两层中有许多锥体细胞。以上三层通常统称为皮层的“上层”。第4层由许多兴奋型的多棘星状细胞组成,而几乎没有锥体细胞(锥体细胞由于对谷氨酸及其类似物具有高亲和性的摄取能力,并且形成兴奋性突触,所以被认为是兴奋型神经元,多棘的星状细胞也属兴奋型,但光滑的星状细胞则属于抑制型);第4层包含4A、4B、4C等三个亚层,4C中还可进一步划分为α和β两个子层。第5、6层统称为大脑皮层的“下层”,它包含许多的锥体细胞,其中一些细胞的树突末梢可一直伸展到最上面的第1层。

第2、3层的细胞仅与其它皮层区相联系,尽管它们中的一些神经元可通过胼胝体与大脑另一半球的皮层区相连接,但它们的投射并未超出皮层区。第6层中有一些神经元通过侧向轴突可以与第4层连接,但该层中的主要神经元是反向投射到丘脑或屏状核(位于皮层下并附属于皮层的核团,它通向脑的中部)。第5层是比较特殊的层次,只有这层的神经元完全投射到皮层以外的地方,从某种意义上可以说,第5层把在皮层中处理完的信息传送到大脑的其他部分和脊髓。